Chapter 1: Concept Learning

Adopted from Machine Learning, Mitchell

Logistics

- Course Instructor: Tanmoy Chakraborty (NLP) <u>https://tanmoychak.com/</u>
- Guest Lecture: TBD (possibly from the industry)
- TAs: Sahil, Aswini, Palash, Prottoy, Vaibhav, Soumyodeep, Anand
- Course page: https://lcs2-iitd.github.io/ELL409-2401/
- Discussion forum: Piazza (<u>https://piazza.com/iitd.ac.in/fall2024/ell409</u>) Access Code: *ell409mli*
- For assignment submission: Moodle
- Group Email: <u>2401-ELL409@courses.iitd.ac.in</u>

Course Directives

- Class Time: Mon and Thu, 8:00 AM 9:20 AM
- Office Hour: as per requirement (email me to schedule an appointment)
- **TA Hour:** (Please email at least an hour before to confirm the meeting location)
 - Monday 4 PM to 5 PM: Vaibhav (mt1210236@iitd.ac.in)
 - **Tuesday** 4 PM to 5 PM: Soumyodeep (aiy237526@scai.iitd.ac.in)
 - Wednesday 4 PM to 5 PM: Sahil (eez238354@ee.iitd.ac.in)
 - Wednesday 3 PM to 4 PM: Aswini (eez238359@iitd.ac.in)
 - Thursday 4 PM to 5 PM: Palash (sondhanil1@gmail.com)
 - Friday 3 PM to 4 PM: Anant (aib232068@scai.iitd.ac.in)
- Room: LH114

Timeline

- Project Finalization: 10/08/2024
- Quiz 1: 12/08/2024
- Assignment 1: 13/08/2024
- Quiz 2: 05/09/2024
- Mid-Term: 12/09/2024 18/09/2024
- Assignment 2: 20/09/2024
- Assignment 3: 17/10/2024
- Quiz 3: 21/10/2024
- Quiz 4: 11/11/2024
- Major: 16/11/2024 23/11/2024
- Project assessment: Before endsem

Some announcements

 Coding practice twice a month (led by the TA) – outside the regular lecture hours

Some announcements

- Coding practice twice a month (led by the TA) outside the regular lecture hours
- Sample questions for practice before midterm and major

Some announcements

- Coding practice twice a month (led by the TA) outside the regular lecture hours
- Sample questions for practice before midterm and major
- Quiz every class 8:00 AM to 8:05 AM

Outline

- Learning from examples
- General-to-specific ordering over hypotheses
- Version spaces and candidate elimination algorithm
- Picking new examples
- \bullet The need for inductive bias

Training Examples for *EnjoySport*

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

What is the general concept?

Concept Learning

Inferring a Boolean-valued function from training examples of its input and output

Representing Hypotheses

Many possible representations

Here, h is conjunction of constraints on attributes

Each constraint can be

- a specific value (e.g., Water = Warm)
- don't care (e.g., "Water = ?")
- no value allowed (e.g., "Water= \emptyset ")

For example,

SkyAirTemp HumidWindWaterForecst $\langle Sunny$??Strong?Same \rangle

Notations

- Instances: The set of items over which the concept is defined
- Target concept (c): The concept to be learned
- Hypothesis (h): A supposition or proposed explanation made on the basis of limited evidence (training set)
- Hypotheses Space (H): The set of all possible hypotheses

Prototypical concept learning task

- Given:
 - Instances X: Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind, Water, Forecast
 - Target function c: $EnjoySport: X \rightarrow \{0, 1\}$
 - Hypotheses H: Conjunctions of literals. E.g.

 $\langle ?, Cold, High, ?, ?, ? \rangle$.

– Training examples D: Positive and negative examples of the target function

 $\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$

• Determine: A hypothesis h in H such that h(x) = c(x) for all x in D.

The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Concept Learning as a search

- The task of searching through a large space of hypotheses
- Goal: Find the hypothesis that best fits the training example
- How many distinct instances are possible?

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

- How many systematically distinct hypotheses are possible?
- How many **semantically** distinct hypotheses are possible?

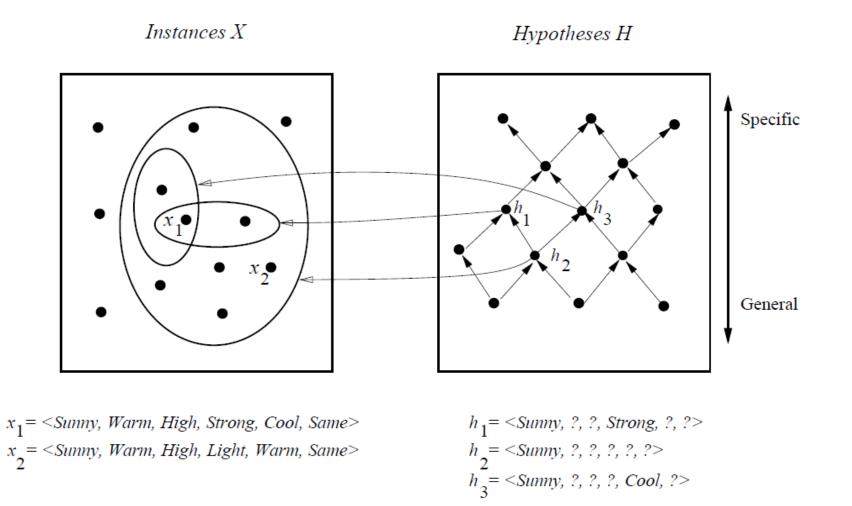
General-to-specific ordering of hypotheses

- h1= <Sunny, ?, ?, Strong, ?, ?>
- h2= <Sunny, ?, ?, ?, ?, ?>
- For any instance x in X and hypothesis h in H, we say that x satisfies h if and only if h(x) = 1.

Definition: Let h_j and h_k be boolean-valued functions defined over X. Then h_j is more_general_than_or_equal_to h_k (written $h_j \ge_g h_k$) if and only if

 $(\forall x \in X)[(h_k(x) = 1) \rightarrow (h_j(x) = 1)]$

Hasse diagram

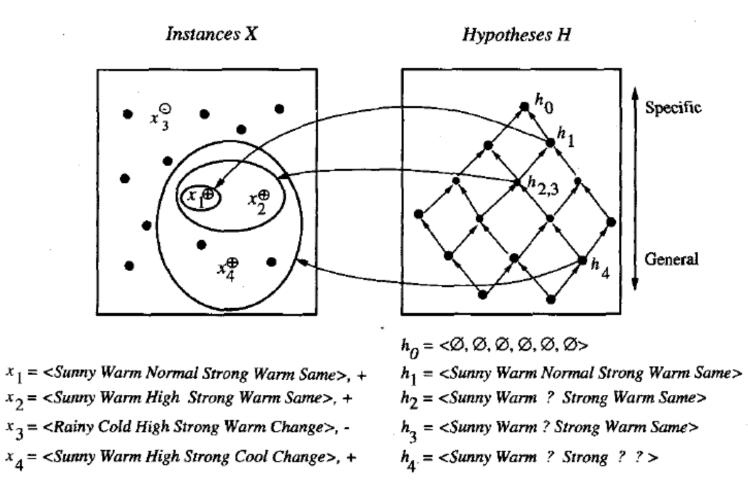


Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance \boldsymbol{x}
 - For each attribute constraint a_i in h

 If the constraint a_i in h is satisfied by x
 Then do nothing
 Else replace a_i in h by the next more
 general constraint that is satisfied by x
- 3. Output hypothesis h

Find-S Algorithm



At each step, h is the most/least specific/general hypothesis consistent with the training examples observed to this step

Find-S Algorithm – ignore negative instances

- Ignores every -ve training instances!
- However, the current hypothesis is already consistent with the -ve example
- As long as we assume that H contains a hypothesis that describes target concept and the training data is correct, it never requires to consider –ve examples
- Why?

Complaints about Find-S

- Has the learner converged to the current target concept?
 - No way to determine if it has found the *only hypothesis* that is consistent with the target concept
 - Or there are many other consistent hypotheses as well
- Why prefer the most specific hypothesis?
 - In case of multiple hypotheses consistent with the target concept, why to consider the most specific one?
- Are the training example consistent?
 - What if a few training instances are corrupted?
- What if there are several maximally specific consistent hypotheses?
 - Find-S should be backtracked to generalize the hypothesis

Version Space and CANDIDATE- ELIMINATION

- Outputs a description of the set of all hypotheses consistent with the training set
- It uses *more_general_than* partial order

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

 $Consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D) \ h(x) = c(x)$

Version Space and CANDIDATE- ELIMINATION

- An example x is said to *satisfy* hypothesis h when h(x) = 1, regardless of whether x is a positive or negative example of the target concept.
- However, whether such an example is *consistent* with h depends on the target concept, and in particular, whether h(x) = c(x).

Version Space and CANDIDATE- ELIMINATION

- CANDIDATE-ELIMINATION generates set of all hypotheses consistent with the observation
- This set is called **version space**

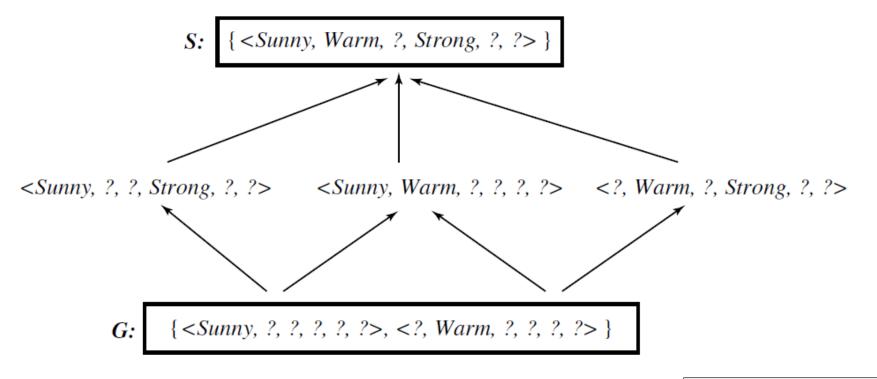
The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

 $VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$

LIST-THEN-ELIMINATION Algorithm

- 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$ remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in *VersionSpace*

Compact Representation of Version Space



Find-S only generates <Sunny, Warm, ?, Strong, ?, ?> But all six hypotheses shown above are consistent

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	\mathbf{Same}	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Representing Version Space

The **General boundary**, G, of version space $VS_{H,D}$ is the set of its maximally general members

The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members

Every member of the version space lies between these boundaries

 $VS_{H,D} = \{h \in H | (\exists s \in S) (\exists g \in G) (g \ge h \ge s)\}$ where $x \ge y$ means x is more general or equal to y

CANDIDATE- ELIMINATION Algorithm

- $G \leftarrow \text{maximally general hypotheses in } H$ $S \leftarrow \text{maximally specific hypotheses in } H$ For each training example d, do
- \bullet If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove s from S
 - \ast Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of G is more general than h
 - * Remove from S any hypothesis that is more general than another hypothesis in S

- If d is a negative example
- $-\operatorname{Remove}$ from S any hypothesis inconsistent with d
- For each hypothesis g in G that is not consistent with d
 - * Remove g from G
 - \ast Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of S is more specific than h
 - * Remove from G any hypothesis that is less general than another hypothesis in G

Example

{<Ø, Ø, Ø, Ø, Ø, Ø>}

{<?, ?, ?, ?, ?, ?, ?>}

s₀:

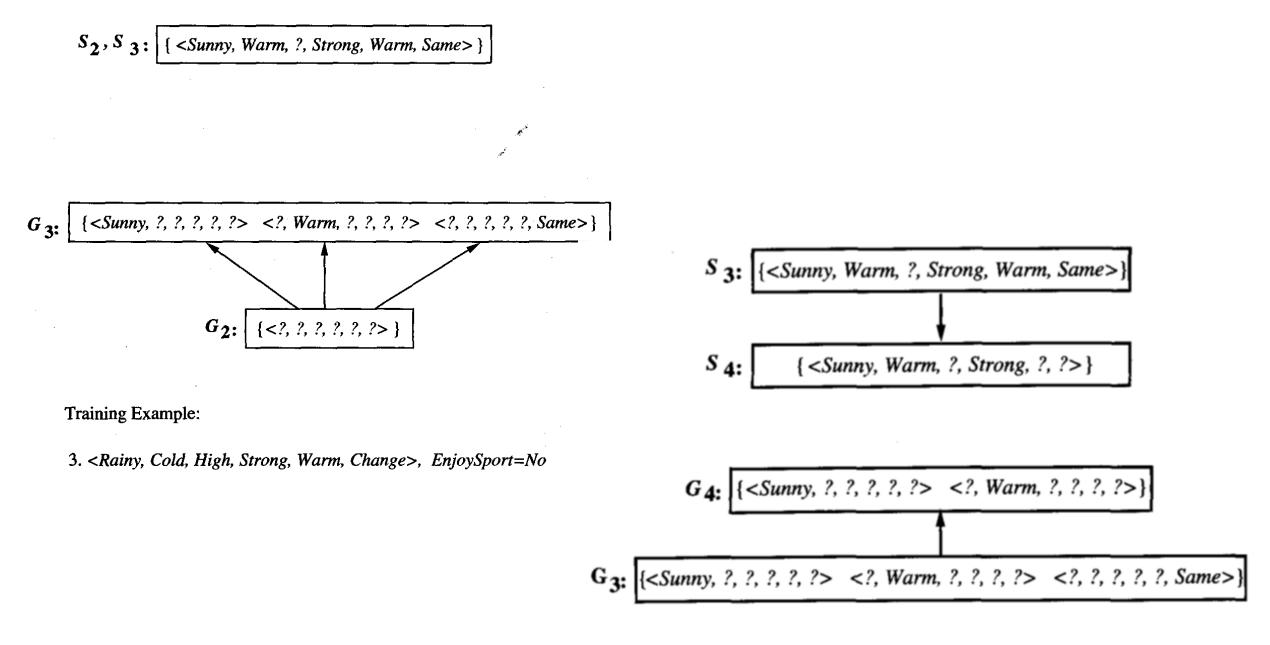


Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No



Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Example

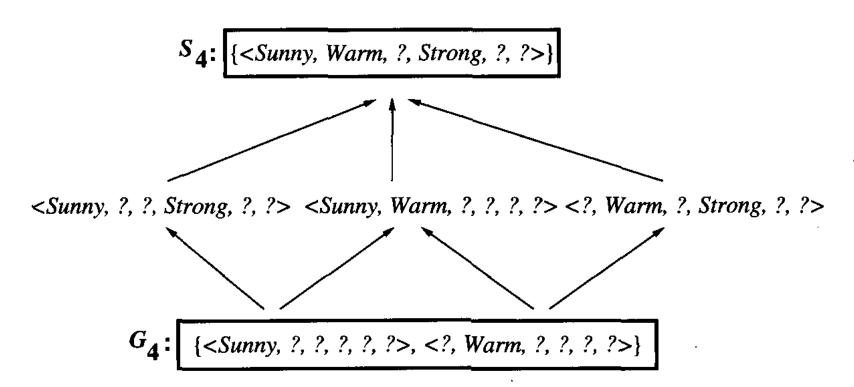


FIGURE 2.7

The final version space for the *EnjoySport* concept learning problem and training examples described earlier.

Remarks on CANDIDATE-ELIMINATION

- Will the CANDIDATE-ELIMINA algorithm Converge to the Correct Hypothesis?
- What Training Example Should the Learner Request Next?

• How Can Partially Learned Concepts Be Used?

Instance	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
A	Sunny	Warm	Normal	Strong	Cool	Change	?
В	Rainy	Cold	Normal	Light	Warm	Same	?
С	Sunny	Warm	Normal	Light	Warm	Same	?
D	Sunny	Cold	Normal	Strong	Warm	Same	?